Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
RSC Adv ; 14(17): 12131-12141, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38628472

RESUMO

This study explores the limitations of TiO2 as a photocatalyst, focusing on its narrow bandwidth and high electron-hole complexation probabilities that restrict its applications. A novel one-pot synthesis method for TiO2/hydrochar matrix composites is presented, with variations achieved through control of hydrothermal temperature, time, and loading concentration. The efficacy of these composites in ammonia removal is investigated, revealing optimal performance for the composite denoted as 3Ti-160-7, synthesized with a titanium salt concentration of 0.3 mol L-1, a hydrothermal temperature of 160 °C, and a hydrothermal time of 7 hours. Comparative analyses with commercial TiO2 (P25) and hydrochar demonstrate superior performance of 3Ti-160-7, exhibiting significantly lower ammonia concentration and reduced NO and NO2 concentrations. This research underscores the cost-effectiveness and application potential of TiO2/hydrochar matrix composites, offering valuable insights for the enhancement of photocatalytic activity and broader applicability in addressing TiO2-related challenges.

2.
Sci Total Environ ; : 172508, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642752

RESUMO

Water-soluble organic aerosol (WSOA) plays a crucial role in altering radiative forcing and impacting human health. However, our understanding of the seasonal variations of WSOA in Chinese megacities after the three-year clean air action plan is limited. In this study, we analyzed PM2.5 filter samples collected over one year (2020-2021) in Beijing to characterize the seasonal changes in the chemical and optical properties of WSOA using an offline aerosol mass spectrometer along with spectroscopy techniques. The mean mass concentration of WSOA during the observation period was 8.84 ±â€¯7.12 µg m-3, constituting approximately 64-67 % of OA. Our results indicate the contribution of secondary OA (SOA) increased by 13-28 % due to a substantial reduction in primary emissions after the clean air action plan. The composition of WSOA exhibited pronounced seasonal variations, with a predominant contribution from less oxidized SOA in summer (61 %) and primary OA originating from coal combustion and biomass burning during the heating season (34 %). The mass absorption efficiency of WSOA at 365 nm in winter was nearly twice that in summer, suggesting that WSOA from primary emissions possesses a stronger light-absorbing capability than SOA. On average, water-soluble brown carbon accounted for 33-48 % of total brown carbon absorption. Fluorescence analysis revealed humic-like substances as the most significant fluorescence component of WSOA, constituting 82 %. Furthermore, both absorption and fluorescence chromophores were associated with nitrogen-containing compounds, highlighting the role of nitrogen-containing species in influencing the optical properties of WSOA. The results are important for chemical transport models to accurately simulate the WSOA and its climate effects.

3.
Zhongguo Fei Ai Za Zhi ; 27(3): 231-240, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38590197

RESUMO

Tumor-associated macrophage (TAM) play a crucial role in the immune microenvironment of lung cancer. Through changes in their phenotype and phagocytic functions, TAM contribute to the initiation and progression of lung cancer. By promoting the formation of an immune-suppressive microenvironment and accelerating the growth of abnormal tumor vasculature, TAM facilitate the invasion and metastasis of lung cancer. Macrophages can polarize into different subtypes with distinct functions and characteristics in response to various stimuli, categorized as anti-tumor M1 and pro-tumor M2 types. In tumor tissues, TAM typically polarize into the alternatively activated M2 phenotype, exhibiting inhibitory effects on tumor immunity. This article reviews the role of anti-angiogenic drugs in modulating TAM phenotypes, highlighting their potential to reprogram M2-type TAM into an anti-tumor M1 phenotype. Additionally, the functional alterations of TAM play a significant role in anti-angiogenic therapy and immunotherapy strategies. In summary, the regulation of TAM polarization and function opens up new avenues for lung cancer treatment and may serve as a novel target for modulating the immune microenvironment of tumors.
.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Macrófagos Associados a Tumor , Microambiente Tumoral , Macrófagos/patologia , Imunoterapia
4.
Front Oncol ; 14: 1327899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529377

RESUMO

Background: Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm with malignant potential. Bladder IMT is even rarer and mainly treated by surgical resection However, partial or radical cystectomy would affect the quality of life of patients due to major surgical trauma, and classical TURBT is hard to avoid intraoperative complications including obturator nerve reflex and bleeding etc. Therefore, the safe and effective better choice of surgical approaches become critical to bladder IMT. Case presentation: A 42-year-old male patient was admitted to the department of urology with persistent painless gross hematuria for more than 10 days without the presentation of hypertension. Preoperative routine urine examination of red blood cells was 7738.9/HPF (normal range ≤ 3/HPF). CTU indicated a space occupying lesion (6.0 cm×5.0 cm) in the left posterior wall of the bladder with heterogeneous enhancement in the excretory phase. MRI also indicated bladder tumor with slightly equal SI on T1WI and mixed high SI on T2WI (6.0 cm×5.1cm×3.5cm) in the left posterior wall of the bladder. En bloc resection of bladder IMT with 1470 nm diode laser in combination of removing the enucleated tumor by the morcellator system was performed. Postoperative pathological examination revealed bladder IMT, with IHC positive for Ki-67 (15-20%), CK AE1/AE3, SMA, and Desmin of bladder IMT and negative for ALK of bladder IMT as well as FISH negative for ALK gene rearrangement. Second TUR with 1470 nm diode laser was performed within 6 weeks to reduce postoperative risk of recurrence due to highly malignant potential for the high expression of Ki-67 (15-20%) and negative ALK in IHC staining. The second postoperative pathology report showed chronic inflammation concomitant with edema of the bladder mucosa without bladder IMT, furthermore no tumor was observed in muscularis propria layer of bladder. No recurrence occurred during the period of 24-month follow-up. Conclusion: En bloc resection of bladder IMT in combination of the following second transurethral resection with 1470 nm diode laser is a safe and effective surgical approach for the huge bladder IMT with highly malignant potential.

5.
Respiration ; 103(3): 155-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382489

RESUMO

INTRODUCTION: Targeting the parasympathetic nervous system innervating the airway with pharmacologic products has been proved to improve the clinical outcomes of severe asthma. Bronchial cryo-denervation (BCD) is a novel non-pharmacologic treatment for severe asthma using an endobronchial cryo-balloon administered via bronchoscopy to denervate parasympathetic pulmonary nerves. Preclinical studies have demonstrated that BCD significantly disrupted vagal innervation in the lung. METHODS: A total of 15 patients with severe asthma were enrolled in this prospective, single-center pilot study. Patients underwent bifurcated BCD treatment at a 30-day interval after baseline assessment. Follow-up through 12 months included assessment of adverse events, technical feasibility, and changes in pulmonary function; asthma control questionnaire-7 (ACQ-7); and asthma control test (ACT). RESULTS: BCD was performed on all 15 severe asthma patients, with technical feasibility of 96.7%. There were no device-related and 2 procedure-related serious adverse events through 12 months, which resolved without sequelae. The most frequent nonserious procedure-related adverse event was increased cough in 60% (9 of 15) patients. Pulmonary function remained unchanged, and significant improvements from baseline ACQ-7 (mean, -1.19, p = 0.0032) and ACT (mean, 3.18, p = 0.0011) scores were observed since the first month's follow-up after a single lung airway treatment, with similar trends till the end of the 12-month follow-up. CONCLUSION: This study provides the first clinical evidence of the safety, feasibility, and initial efficacy of BCD in patients with severe asthma.

6.
J Surg Oncol ; 129(6): 1073-1081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321865

RESUMO

OBJECTIVE: To investigate the effect of adrenal surgery on blood pressure (BP) improvements in patients with hormone-negative adrenal adenoma (HNA) concomitant with hypertension and analyze associated prognostic factors. METHODS: We retrospectively reviewed the clinical data of patients with HNA and hypertension and patients with aldosterone-producing adenoma (APA) and hypertension who underwent adrenal surgery at our center between 2019 and 2022. Hypertension outcomes were evaluated in all patients and subjects were divided into three groups according to follow-up BP and the administration of anti-hypertensive agents: a clinical curation group, an improvement group, and a no-improvement group. Logistic regression analysis was performed to predict factors associated with clinical curation in patients with HNA post-surgery. RESULTS: Of the 182 patients with HNA, clinical curation was achieved in 58 patients (31.9%), improvement in 72 (39.5%), and no improvement in 52 (28.6%). The clinical curation, improvement and no improvement rates in patients with APA were 64.8% (n = 118), 15.9% (n = 29), and 19.2% (n = 35). Multivariate logistic regression analysis indicated that a duration of hypertension ≤6 years and a plasma aldosterone level >160 pg/ml were both independent factors for the clinical curation of hypertension in patients with HNA after adrenal surgery. CONCLUSION: Adrenal surgery can cure or improve hypertension in most patients with HNA, especially in a short duration of hypertension and high plasma levels of aldosterone.


Assuntos
Neoplasias das Glândulas Suprarrenais , Adrenalectomia , Pressão Sanguínea , Hipertensão , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias das Glândulas Suprarrenais/cirurgia , Neoplasias das Glândulas Suprarrenais/metabolismo , Adenoma/cirurgia , Adenoma/metabolismo , Adenoma/complicações , Adenoma/patologia , Prognóstico , Adulto , Seguimentos , Aldosterona/sangue , Adenoma Adrenocortical/cirurgia , Adenoma Adrenocortical/complicações , Adenoma Adrenocortical/metabolismo , Idoso
7.
Mol Neurobiol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349514

RESUMO

Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).

8.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396711

RESUMO

Apple latent spherical virus (ALSV) is widely used as a virus-induced gene silencing (VIGS) vector for function genome study. However, the application of ALSV to soybeans is limited by the resistance of many varieties. In this study, the genetic locus linked to the resistance of a resistant soybean variety Heinong 84 was mapped by high-throughput sequencing-based bulk segregation analysis (HTS-BSA) using a hybrid population crossed from Heinong 84 and a susceptible variety, Zhonghuang 13. The results showed that the resistance of Heinong 84 to ALSV is controlled by two genetic loci located on chromosomes 2 and 11, respectively. Cleaved amplified polymorphic sequence (CAPS) markers were developed for identification and genotyping. Inheritance and biochemical analyses suggest that the resistance locus on chromosome 2 plays a dominant dose-dependent role, while the other locus contributes a secondary role in resisting ALSV. The resistance locus on chromosome 2 might encode a protein that can directly inhibit viral proliferation, while the secondary resistance locus on chromosome 11 may encode a host factor required for viral proliferation. Together, these data reveal novel insights on the resistance mechanism of Heinong 84 to ALSV, which will benefit the application of ALSV as a VIGS vector.


Assuntos
Soja , Secoviridae , Soja/genética , Vetores Genéticos , Doenças das Plantas/genética
9.
Ecotoxicol Environ Saf ; 272: 116084, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350217

RESUMO

Polyhexamethylene guanidine (PHMG) is manufactured and applied extensively due to its superior disinfectant capabilities. However, the inhalatory exposure to PHMG aerosols is increasingly recognized as a potential instigator of pulmonary fibrosis, prompting an urgent call for elucidation of the underlying pathophysiological mechanisms. Within this context, alveolar macrophages play a pivotal role in the primary immune defense in the respiratory tract. Dysregulated lipid metabolism within alveolar macrophages leads to the accumulation of foam cells, a process that is intimately linked with the pathogenesis of pulmonary fibrosis. Therefore, this study examines PHMG's effects on alveolar macrophage foaminess and its underlying mechanisms. We conducted a 3-week inhalation exposure followed by a 3-week recovery period in C57BL/6 J mice using a whole-body exposure system equipped with a disinfection aerosol generator (WESDAG). The presence of lipid-laden alveolar macrophages and downregulation of pulmonary tissue lipid transport proteins ABCA1 and ABCG1 were observed in mice. In cell culture models involving lipid-loaded macrophages, we demonstrated that PHMG promotes foam cell formation by inhibiting lipid efflux in mouse alveolar macrophages. Furthermore, PHMG-induced foam cells were found to promote an increase in the release of TGF-ß1, fibronectin deposition, and collagen remodeling. In vivo interventions were subsequently implemented on mice exposed to PHMG aerosols, aiming to restore macrophage lipid efflux function. Remarkably, this intervention demonstrated the potential to retard the progression of pulmonary fibrosis. In conclusion, this study underscores the pivotal role of macrophage foaming in the pathogenesis of PHMG disinfectants-induced pulmonary fibrosis. Moreover, it provides compelling evidence to suggest that the regulation of macrophage efflux function holds promise for mitigating the progression of pulmonary fibrosis, thereby offering novel insights into the mechanisms underlying inhaled PHMG disinfectants-induced pulmonary fibrosis.


Assuntos
Desinfetantes , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Guanidina/toxicidade , Guanidina/metabolismo , Camundongos Endogâmicos C57BL , Aerossóis e Gotículas Respiratórios , Pulmão , Guanidinas/metabolismo , Macrófagos , Desinfetantes/farmacologia , Lipídeos
10.
J Cancer Res Clin Oncol ; 150(1): 23, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246894

RESUMO

BACKGROUND: Uveal melanoma (UM) is an aggressive intraocular malignant tumor. The present study aimed to identify the key genes associated with UM metastasis and established a gene signature to analyze the relationship between the signature and prognosis and immune cell infiltration. Later, a predictive model combined with clinical variables was developed and validated. METHODS: Two UM gene expression profile chip datasets were downloaded from TCGA and GEO databases. Immune-related genes (IRGs) were obtained from IMPORT database. First, these mRNAs were intersected with IRGs, and weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression of genes primarily associated with metastasis of UM. Univariate Cox regression analysis screened the genes related to prognosis. LASSO-Cox established a risk score to distinguish high-risk group and low-risk group. Then the GSEA enrichment pathway and immune cell infiltration of the two groups were compared. And combined with clinical variables, a predictive model was constructed. The time-dependent receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) curve were used to verify the stability and accuracy of the final predictive model, and a nomogram was then drawn. RESULTS: The MEblack, MEpurple, and MEblue modules were significantly associated with the metastasis of UM patients (P value < 0.001, = 0.001, = 0.022, respectively). Four genes (UBXN2B, OTUD3, KAT8, LAMTOR2) were obtained by Pearson correlation analysis, weighted gene correlation network analysis (WGCNA), univariate Cox, and LASSO-Cox. And a novel prognostic risk score was established. Immune-related prognostic signature can well classify UM patients into high-risk and low-risk groups. Kaplan-Meier curve showed that the OS of high-risk patients was worse than that of low-risk patients. In addition, the risk score played an important role in evaluating the signaling pathway and immune cell infiltration of UM patients in high-risk and low-risk groups. Both the training set and validation set of the model showed good predictive accuracy in the degree of differentiation and calibration (e.g., 1-year overall survival: AUC = 0.930 (0.857-1.003)). Finally, a nomogram was established to serve in clinical practice. SIGNIFICANCE: UM key gene signature and prognosis predictive model might provide insights for further investigation of the pathogenesis and development of UM at the molecular level, and provide theoretical basis for determining new prognostic markers of UM and immunotherapy.


Assuntos
Melanoma , Segunda Neoplasia Primária , Neoplasias Uveais , Humanos , Prognóstico , Melanoma/genética , Neoplasias Uveais/genética , Nomogramas , Proteases Específicas de Ubiquitina
11.
J Hazard Mater ; 465: 133350, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154178

RESUMO

Brake wear particles (BWPs) are considered one of the most significant non-exhaust particle emission sources from motor vehicles. Previous studies have primarily focused on BWPs from conventional fuel vehicles (CFVs), with limited research available on BWPs from new energy vehicles (NEVs). We developed an independent BWP emission testing system applicable to NEVs and conducted BWP emission tests on representative NEVs and CFVs under various testing cycles via a chassis dynamometer. The BWP emission characteristics of the NEVs equipped with regenerative braking system significantly differed from those of gasoline vehicles. For transient emission characteristics, gasoline vehicles exhibited higher peak concentrations during brake events than brake drag events, while those with regenerative braking exhibited the opposite feature. Under continuous braking, the concentration of ultrafine particles emitted by NEVs was reduced by more than 3 orders of magnitude compared to gasoline vehicles. In terms of single-particle morphology, BWPs could be mainly divided into three categories: carbonaceous particles, iron-rich particles, and mixed metal particles. We obtained realistic emission characteristics of BWPs from NEVs, which could provide data support and a scientific basis for the formulation of relevant emission standards and control measures in the future.

12.
J Adv Res ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37956861

RESUMO

BACKGROUND: Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW: This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.

13.
Ther Adv Urol ; 15: 17562872231213720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033708

RESUMO

Background and objectives: Patients with bladder cancer (BC) are at high risk for recurrence rates and readmission costs. However, the evidence about obesity and metabolic abnormalities on the BC prognosis was inconsistent. Our primary aim was to determine the impact of obesity and different metabolic status on the readmission risk in patients with BC. Design and methods: We identified 16,649 patients with BC using the 2018 Nationwide Readmissions Database who were hospitalized from January to June 2018 and followed for 180 days. The primary outcome was 180-day readmission. The multivariate Cox regression analysis and ordered logistic regression were performed to analyze data. Results: Obesity and metabolic abnormalities were associated with an increased readmission risk in patients with BC [obesity: adjusted hazard ratio (aHR) = 1.08, 95% confidence interval (CI): 1.01-1.16; hyperglycemia: aHR = 1.11, 95% CI: 1.05-1.17; hypertension: aHR = 1.09, 95% CI: 1.03-1.15]. Compared with non-obese and no metabolic abnormalities, the risk of readmission was significantly increased in patients with metabolic abnormalities, irrespective of obesity (non-obese and metabolic abnormalities: aHR = 1.07, 95% CI: 1.02-1.13; obese and metabolic abnormalities: aHR = 1.20, 95% CI: 1.10-1.31), but not in obese and no metabolic abnormalities. These associations were consistent in patients aged 60 years or older and the surgery group. Moreover, hyperglycemia, hypertension, and a graded increment of metabolic risk were associated with an increased readmission risk. We also found increased length of stay for readmission in patients with obesity and metabolic abnormalities (aOR = 1.17, 95% CI: 1.00-1.36). Conclusion: Obesity with metabolic abnormalities and metabolic abnormalities alone were associated with higher readmission risks in patients with BC. It is suggested that prevention should focus not only on obesity but also on metabolic abnormalities to decrease the risk of readmission.

14.
Environ Sci Technol ; 57(42): 15945-15955, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37823561

RESUMO

Air quality in China has continuously improved during the Three-Year Action Plan (2018-2020); however, the changes in aerosol composition, properties, and sources in Beijing summer remain poorly understood. Here, we conducted real-time measurements of aerosol composition in five summers from 2018 to 2022 along with WRF-Community Multiscale Air Quality simulations to characterize the changes in aerosol chemistry and the roles of meteorology and emission reductions. Largely different from winter, secondary inorganic aerosol and photochemical-related secondary organic aerosol (SOA) showed significant decreases by 55-67% in summer, and the most decreases occurred in 2021. Comparatively, the decreases in the primary aerosol species and gaseous precursors were comparably small. While decreased atmospheric oxidation capacity as indicated by ozone changes played an important role in changing SOA composition, the large decrease in aerosol liquid water and small increase in particle acidity were critical for nitrate changes by decreasing gas-particle partitioning substantially (∼28%). Analysis of meteorological influences demonstrated clear and similar transitions in aerosol composition and formation mechanisms at a relative humidity of 50-60% in five summers. Model simulations revealed that emission controls played the decisive role in reducing sulfate, primary OA, and anthropogenic SOA during the Three-Year Action Plan, while meteorology affected more nitrate and biogenic SOA.


Assuntos
Poluentes Atmosféricos , Pequim , Poluentes Atmosféricos/análise , Material Particulado/análise , Nitratos , Monitoramento Ambiental , Aerossóis/análise
15.
Heliyon ; 9(10): e20797, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867902

RESUMO

Asthma is a common disease that seriously threatens public health. With significant developments in bronchoscopy, different interventional pulmonology techniques for refractory asthma treatment have been developed. These technologies achieve therapeutic purposes by targeting diverse aspects of asthma pathophysiology. However, even though these newer techniques have shown appreciable clinical effects, their differences in mechanisms and mutual commonalities still deserve to be carefully explored. Therefore, in this review, we summarized the potential mechanisms of bronchial thermoplasty, targeted lung denervation, and cryoablation, and analyzed the relationship between these different methods. Based on available evidence, we speculated that the main pathway of chronic airway inflammation and other pathophysiologic processes in asthma is sensory nerve-related neurotransmitter release that forms a "neuro-immunity crosstalk" and amplifies airway neurogenic inflammation. The mechanism of completely blocking neuro-immunity crosstalk through dual-ablation of both efferent and afferent fibers may have a leading role in the clinical efficacy of interventional pulmonology in the treatment of asthma and deserves further investigation.

16.
Opt Express ; 31(20): 32373-32382, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859042

RESUMO

Synchronised ultrafast soliton lasers have attracted great research interest in recent decades. However, there is a lack of comprehensive understanding regarding the buildup mechanism of synchronised pulses. Here, we report a dynamic analysis of independent and synchronised solitons buildup mechanisms in synchronised ultrafast soliton lasers. The laser comprises an erbium-doped fibre cavity and a thulium-doped fibre cavity bridged with a common arm. Pulses operating at two different wavelengths formed in the cavities are synchronised by cross-phase modulation-induced soliton correlation in the common fibre arm. We find that the whole buildup process of the thulium-doped fibre laser successively undergoes five different stages: continuous wave, relaxation oscillation, quasi-mode-locking, continuous wave mode-locking and synchronised mode-locking. It is found that the starting time of the synchronised solitons is mainly determined by the meeting time of dual-color solitons. Our results will further deepen the understanding of dual-color synchronised lasers and enrich the study of complex nonlinear system dynamics.

17.
Nanotechnology ; 35(5)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37883951

RESUMO

Nanopatterning complex uneven surface of numerous functional devices to improve their performance is significantly appealing; however, it is extremely challenging. This study proposes a discretely-supported transfer nanoimprint technique to fabricate nanostructures on complex device surfaces containing multi-spatial frequencies. First, a discretely-supported nanoimprint template was designed based on the built energy criterion. A contact fidelity of over 99% was achieved between the designed template and the targeted complex uneven substrate surface. Next, the prefilled nanostructures on the template were transferred to the target surface after contact. By precisely controlling the amount of micro-droplet jetting on the template on-demand, the accumulation of the polymer in the micro-valley sites on the complex substrate was avoided, thus maintaining the morphology and generating function of the devices. Finally, high-quality Fresnel lenses with broadband wide-directional antireflection and excellent imaging performance were developed by imprinting subwavelength-tapered nanostructures on the relief surface.

18.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37607001

RESUMO

Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células Endoteliais/metabolismo , Transcrição Gênica , RNA Polimerase I/genética , Neoplasias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética
19.
Front Psychiatry ; 14: 1147327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457781

RESUMO

Objective: To comprehensively evaluate the efficacy of non-invasive brain stimulation (NIBS) in patients with autism spectrum disorder (ASD) in randomized controlled trials (RCT), providing a reference for future research on the same topic. Methods: Five databases were searched (Pubmed, Web of Science, Medline, Embase, and Cochrane library) and tracked relevant references, Meta-analysis was performed using RevMan 5.3 software. Results: Twenty-two references (829 participants) were included. The results of the meta-analysis showed that NIBS had positive effects on repetitive and stereotypical behaviors, cognitive function, and executive function in autistic patients. Most of the included studies had a moderate to high risk of bias, Mainly because of the lack of blinding of subjects and assessors to treatment assignment, as well as the lack of continuous observation of treatment effects. Conclusion: Available evidence supports an improvement in some aspects of NIBS in patients with ASD. However, due to the quality of the original studies and significant publication bias, this evidence must be treated with caution. Further large multicenter randomized double-blind controlled trials and appropriate follow-up observations are needed to further evaluate the specific efficacy of NIBS in patients with ASD.

20.
EMBO J ; 42(16): e113258, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37409632

RESUMO

Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.


Assuntos
Antivirais , Biogênese de Organelas , Animais , Camundongos , DNA Mitocondrial/genética , Imunidade Inata , Fator 1 Nuclear Respiratório/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...